RSS
hai cak,piye kabare ????.

titik potong


 Melukis Grafik 
Matematika Kelas 3 > Trigonometri 431 
<>
 
y = a cos x + b sin x

a cos x + b sin x = K cos (x - a)

Maksimum = K ® bila cos (x - a) = 1
  cos (x - a) = cos 0°
  ® untuk x = a + n.360°

Minimum = -K ® bila cos (x - a) = -1
  cos (x - a) = cos 180° 
  ® untuk x = a ± 180° + n.360°


NILAI PEMBUAT NOL FUNGSI (TITIK POTONG DENGAN SUMBU-x)

y = 0 ® bila cos (x-a) = 0
  cos (x-a) = cos 90° 
  ® untuk x = a ± 90° + n360°


grafik dibuat berdasarkan data-data diatas  
 
 
 

sudut istimewa

 Sudut Istimewa 
Matematika Kelas 3 > Trigonometri 426 
<>
 

SUDUT ISTIMEWA 

   

 0° 30° 45° 60° 90° 180° 270° 360°  
sin 0 1/2 ½ Ö2 ½ Ö3 1 0 -1 0 
cos 1 ½ Ö3 ½ Ö2 1/2 0 -1 0 1 
tan 0 1/3 Ö3 1 Ö3 ~ 0 ~ 0 

Sudut (90 - a)

sin (90 - a) = Cos a
Cos (90 - a) = sin a 
tan (90 - a) = cot a Sudut (90 + a)

sin (90 + a) = Cos a 
Cos (90 + a) = - sin a 
tan (90 + a) = - cot a 
Sudut (180 - a)

sin (180 - a) = sin a 
Cos (180 - a) = - Cos a 
tan (180 - a) = - tan a Sudut (180 + a)

sin (180+a) = -sina 
Cos (180 + a) = - Cos a 
tan (180 + a) = tan a 
Sudut (270 - a)

sin (270 - a) = - Cos a 
cos (270 - a) = - sin a 
tan (270 - a) = ctg a Sudut (270 + a)

sin (270 + a) = -cos a 
cos (270 + a) = sin a 
tan (270 + a) = - cot a 
Sudut (360 - a)

sin (360 - a) = - sin a 
Cos (360 - a) = Cos a 
tan (360 - a) = - tan a Sudut (360 + a)

sin (360 + a) = sin a 
Cos (360 + a) = Cos a 
tan (360 + a) = tan a 

Sudut Negatif

sin (-a) = - sin a 
Cos (-a) = Cos a 
tan (-a) = - tan a 
 

Sudut negatif dihitung searah dengan jarum jam.
Tanda pada sudut negatif sesuai dengan tanda pada kuadran ke IV. 

Keterangan :

Untuk a sudut lancip


Kuadran Hubungan 
I a atau (90 - a) 
II (180 - a) (90 + a) 
III (180 + a) (270 - a) 
IV (360 - a) (270 + a) 


RINGKASAN

Sudut (180 ± a) ; (360 ± a) ® FUNGSI TETAP, tanda sesuai dengan kuadran

Sudut (90 ± a) ; (270 ± a) ® FUNGSI BERUBAH, tanda sesuai dengan kuadran 
 
 
 
 

geometri

Barisan dan Deret Geometri (Ukur / Kali)
Matematika Kelas 2 >Barisan dan Deret 414

<>

BARISAN GEOMETRI

U1, U2, U3, ......., Un-1, Un disebut barisan geometri, jika

U1/U2 = U3/U2 = .... = Un / Un-1 = konstanta

Konstanta ini disebut pembanding / rasio (r)

Rasio r = Un / Un-1

Suku ke-n barisan geometri

a, ar, ar² , .......arn-1
U1, U2, U3,......,Un

Suku ke n Un = arn-1 ® fungsi eksponen (dalam n)


DERET GEOMETRI

a + ar² + ....... + arn-1 disebut deret geometri
a = suku awal
r = rasio
n = banyak suku

Jumlah n suku

Sn = a(rn-1)/r-1 , jika r>1
  = a(1-rn)/1-r , jika r<1 ® Fungsi eksponen (dalam n)

Keterangan:

Rasio antara dua suku yang berurutan adalah tetap
Barisan geometri akan naik, jika untuk setiap n berlaku 
Un > Un-1
Barisan geometri akan turun, jika untuk setiap n berlaku
Un < Un-1

Bergantian naik turun, jika r < 0

Berlaku hubungan Un = Sn - Sn-1
Jika banyaknya suku ganjil, maka suku tengah
  _______ __________
Ut = Ö U1xUn = Ö U2 X Un-1 dst.  

Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar


DERET GEOMETRI TAK BERHINGGA

Deret Geometri tak berhingga adalah penjumlahan dari

U1 + U2 + U3 + ..............................

¥
å Un = a + ar + ar² .........................
n=1 

dimana n ® ¥ dan -1 < r < 1 sehingga rn ® 0 

Dengan menggunakan rumus jumlah deret geometri didapat :

Jumlah tak berhingga S¥ = a/(1-r)

Deret geometri tak berhingga akan konvergen (mempunyai jumlah) untuk -1 < r < 1

Catatan:

a + ar + ar2 + ar3 + ar4 + .................

Jumlah suku-suku pada kedudukan ganjil

a+ar2 +ar4+ ....... Sganjil = a / (1-r²)

Jumlah suku-suku pada kedudukan genap

a + ar3 + ar5 + ...... Sgenap = ar / 1 -r² 

Didapat hubungan : Sgenap / Sganjil = r

 

PENGGUNAAN

Perhitungan BUNGA TUNGGAL (Bunga dihitung berdasarkan modal awal)

M0, M1, M2, ............., Mn

M1 = M0 + P/100 (1) M0 = {1+P/100(1)}M0

M2 = M0 + P/100 (2) M0 = {1+P/100(2)} M0

.
.
.
.

Mn =M0 + P/100 (n) M0 ® Mn = {1 + P/100 (n) } M0


Perhitungan BUNGA MAJEMUK (Bunga dihitung berdasarkan modal terakhir)

M0, M1, M2, .........., Mn

M1 = M0 + P/100 . M0 = (1 + P/100) M0

M2 = (1+P/100) M0 + P/100 (1 + P/100) M0 = (1 + P/100)(1+P/100)M0 
  = (1 + P/100)² M0
.
.


Mn = {1 + P/100}n M0

Keterangan :

M0 = Modal awal
Mn = Modal setelah n periode
p = Persen per periode atau suku bunga
n = Banyaknya periode

Catatan:

Rumus bunga majemuk dapat juga dipakai untuk masalah pertumbuhan tanaman, perkembangan bakteri (p > 0) dan juga untuk masalah penyusutan mesin, peluruhan bahan radio aktif (p < 0).

aritmatika

BARISAN ARITMATIKA

U1, U2, U3, .......Un-1, Un disebut barisan aritmatika, jika
U2 - U1 = U3 - U2 = .... = Un - Un-1 = konstanta

Selisih ini disebut juga beda (b) = b =Un - Un-1 

Suku ke-n barisan aritmatika a, a+b, a+2b, ......... , a+(n-1)b
  U1, U2, U3 ............., Un

Rumus Suku ke-n :

Un = a + (n-1)b = bn + (a-b) ® Fungsi linier dalam n


DERET ARITMATIKA

a + (a+b) + (a+2b) + . . . . . . + (a + (n-1) b) disebut deret aritmatika.

a = suku awal
b = beda 
n = banyak suku 
Un = a + (n - 1) b adalah suku ke-n

Jumlah n suku

Sn = 1/2 n(a+Un)
  = 1/2 n[2a+(n-1)b]
  = 1/2bn² + (a - 1/2b)n ® Fungsi kuadrat (dalam n)

Keterangan:

Beda antara dua suku yang berurutan adalah tetap (b = Sn")

Barisan aritmatika akan naik jika b > 0
Barisan aritmatika akan turun jika b < 0

Berlaku hubungan Un = Sn - Sn-1 atau Un = Sn' - 1/2 Sn"

Jika banyaknya suku ganjil, maka suku tengah

Ut = 1/2 (U1 + Un) = 1/2 (U2 + Un-1) dst. 

Sn = 1/2 n(a+ Un) = nUt ® Ut = Sn / n

Jika tiga bilangan membentuk suatu barisan aritmatika, maka untuk memudahkan perhitungan misalkan bilangan-bilangan itu adalah a - b , a , a + b

RUMUS trigonometri

Rumus-Rumus Trigonometri 
Matematika Kelas 3 > Trigonometri 430

<>

PENJUMLAHAN DUA SUDUT (a + b) 

sin(a + b) = sin a cos b + cos a sin b
cos(a + b) = cos a cos b - sin a sin b
tg(a + b ) = tg a + tg b 
  1 - tg2a 

SELISIH DUA SUDUT (a - b)

sin(a - b) = sin a cos b - cos a sin b
cos(a - b) = cos a cos b + sin a sin b
tg(a - b ) = tg a - tg b 
  1 + tg2a 

SUDUT RANGKAP 

sin 2a = 2 sin a cos a
cos 2a = cos2a - sin2 a
 = 2 cos2a - 1
 = 1 - 2 sin2a
tg 2a = 2 tg 2a 
  1 - tg2a
sin a cos a = ½ sin 2a
cos2a = ½(1 + cos 2a)
sin2a = ½ (1 - cos 2a)

Secara umum :

sin na = 2 sin ½na cos ½na
cos na = cos2 ½na - 1
= 2 cos2 ½na - 1
= 1 - 2 sin2 ½na
tg na = 2 tg ½na  
  1 - tg2 ½na

JUMLAH SELISIH DUA FUNGSI YANG SENAMA


BENTUK PENJUMLAHAN ® PERKALIAN

sin a + sin b = 2 sin a + b cos a - b
  2 2 
sin a - sin b = 2 cos a + b sin a - b
  2 2 
cos a + cos b = 2 cos a + b cos a - b
  2 2 
cos a + cos b = - 2 sin a + b sin a - b
  2 2 

BENTUK PERKALIAN ® PENJUMLAHAN 

2 sin a cos b = sin (a + b) + sin (a - b)
2 cos a sin b = sin (a + b) - sin (a - b)
2 cos a cos b = cos (a + b) + cos (a - b)
- 2 sin a cos b = cos (a + b) - sin (a - b)

PENJUMLAHAN FUNGSI YANG BERBEDA

Bentuk a cos x + b sin x

Merubah bentuk a cos x + b sin x ke dalam bentuk K cos (x - a)


a cos x + b sin x = K cos (x-a)

dengan :  
  K = Öa2 + b2 dan tg a = b/a Þ a = ... ?

Kuadran dari a ditentukan oleh kombinasi tanda a dan b sebagai berikut I II III IV
a + - - +
b + + - -


keterangan :
a = koefisien cos x
b = koefisien sin x 


PERSAMAAN
I. sin x = sin a Þ x1 = a + n.360°
  x2 = (180° - a) + n.360°



  cos x = cos a Þ x = ± a + n.360°


tg x = tg a Þ x = a + n.180° (n = bilangan bulat)

II. a cos x + b sin x = c
  a cos x + b sin x = C
  K cos (x-a) = C
  cos (x-a) = C/K
  syarat persamaan ini dapat diselesaikan
  -1 £ C/K £ 1 atau K² ³ C² (bila K dalam bentuk akar)

misalkan C/K = cos b
  cos (x - a) = cos b
  (x - a) = ± b + n.360° ® x = (a ± b) + n.360°
 
Copyright 2009 katakan TUHAN itu satu. All rights reserved.
Free WordPress Themes Presented by EZwpthemes.
Bloggerized by Miss Dothy